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OUTLINE 

• Purpose 
– Why are we doing this? 

• Collecting Data 
– How are we doing this? 

• Analyzing Data 
– What does this data tell us? 

• Conclusion 
• What implications does this have? 

 
PURPOSE 

• What is creep? 
– Creep is the deformation of material due to stress over time that can lead 

to mechanical failure 
• Why do we care about creep? 

– The PVC that will be used in the NOvA detector will be subject to stress 
caused by the weight of the detector for the duration of the detector’s run. 
Therefore, it will undergo creep deformation. 

– We need to know whether or not this deformation will be enough to cause 
mechanical failure of the PVC that makes up the structure of the detector 

 
COLLECTING DATA 

• The samples are much wider where they are clamped to the stand so that the creep 
will essentially only take place in the long center part 

• There is a lever arm at the bottoms of the samples on which to put weights for 
causing stress 

• Data was taken for 9 different stresses, with 2 PVC samples at each stress, for a 
total of 18 samples 

• Data was taken periodically over 188 days 
 

Figure 2: Example of PVC sample  
 

Figure 1: Diagram of creep test stand 
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Figure 3: Picture of a test stand in use 
 

INITIAL DATA 
• This graph represents the stress-strain curves of the PVC at select times. Each 

curve represents the strain at every stress at the time indicated in the legend. 
•

Figure 4: Stress-strain curves at various times 
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CREEP 
• Creep is the deformation of material due to stress over time that can lead to 

mechanical failure 
• There are three stages of creep: 

– Primary: strain rate decreases 
– Secondary: strain rate is approximately constant (linear region) 
– Tertiary: strain rate increases (preceeds creep rupture) 

• Since our data does not represent the tertiary or secondary creep region, the data 
should resemble the primary creep region  

 

Figure 5: Sketch of a general strain curve with creep regions indicated 
 

CREEP MODULUS 
• What is it? 

– The creep modulus is the ratio of applied stress to strain due to creep 
 

• What do we want to see? 
– Since we want the minimum amount of strain for a given stress, we would 

like to see the highest creep modulus possible 
 
LINEAR VS. NON-LINEAR FITS 

• With a linear fit, stress is proportional to strain 
• The fact that creep is split into three different stages suggests that the process is 

not linear with respect to time. Since it doesn’t make sense, I did not try a linear 
fit with respect to time 

• A linear fit refers to being linear with respect to stress 
• The best fit for the stress-strain curve looks like it might be a straight line 

(although the data is quite rough so it is not clear), which suggests that a linear fit 
with respect to stress might be a good fit. 

• I will fit the data with a linear fit with respect to stress, which will be shown later, 
however most of the fits shown will not be linear 
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GRAPH SCALE COMPARISON 
• Figure 6 shows that the data does, in fact, resemble the primary creep stage 
• This comparison should give you an idea of how these curves translate to a log 

scale graph 
• The rest of the graphs in this presentation will be on a log scale unless otherwise 

noted 
 

Figure 6: Strain curves for samples at 2100 PSI on a linear scale graph  
 

Figure 7: Strain curves for samples at 2100 PSI on a log scale graph 
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STRESS EFFECT 
• It is important to notice that as the stress increases, the strain curve changes shape 

as well as magnitude 
• At low stresses the strain curve is curved, and well represented by an exponential 
• At high stresses the strain curve is a straight line, and well represented by a power 

law 
 

Figure 8: Strain curves at various stresses 
 

MATHEMATICALLY MODELING CREEP 
• Uniaxial creep is generally modeled by the separable equation 

 

• For this analysis, the temperature function will be considered to be an 
arbitrary constant. The temperature dependence is usually based on the 
Arrhenius law  

 

where ∆H is the activation energy, R is the Boltzmann constant, and T is the 
absolute temperature. Because of how this formula applies the temperature 
correction, it makes sense to use it for samples that were each kept at a 
constant temperature (i.e. temperature change between samples). It does not 
make sense to use it for temperature change between measurements. Since the 
temperature of the samples was 22.5 deg C +/- 2 deg C, we decided that this 
was a small enough ∆T between measurements to use the raw data without 
applying a temperature correction.  

• There are now test stations ready to start taking temperature dependent data in 
a controlled environment. 
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LINEAR VISCOELASTIC MODEL 
• In this model, the first spring is used to represent the almost instantaneous 

deformation that occurs when a stress is applied to an object. 
• The spring and dashpot, connected in parallel, represent the slower deformation 

that occurs due to a continued stress on an object over time. 
• Since the result of the first spring is nearly instantaneous at t=0, it is easier to 

assume that it is instantaneous and analyze the spring-dashpot combination. Then 
you can let the effect of the first spring be represented by a constant 

 

Figure 9: Diagram of the linear viscoelastic creep model 
 

DESCRIBING THE MODEL 
For a dashpot, velocity is proportional to  
force, so 
 
After doing a force balance, you’re left with 
 the differential equation 
 
Which has the solution 
 
However, since all of the constants in the  
model are arbitrary, you can rewrite this more 
simply as  
 
This model is implicitly linear with respect to stress, since spring compression is linear 
with respect to force, and dashpot velocity is linear with respect to force. 
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LINEAR VISCOELASTIC MODEL GRAPHS 
*For the rest of this document, fits are in red and all other colors represent data* 

 

Figures 10-13: Creep data fit using the linear viscoelastic model 
 

GRAPH ANALYSIS 
• The exponential seems to work well for low stress 
• It is not explicitly a function of stress 

– As a result, each stress has to be fit individually 
– This causes the fit to lose predictive power, since you have can only use 

stresses that you’ve tested 
• It does not fit well at high stress 
• Needs a stress function to go with it, but what form? 

– Since the high stresses resemble a power law, and the low stresses 
resemble an exponential, those are the most logical functions to try 

– Based on the stress-strain curve, a linear relationship might be a good 
choice 
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Figure 14: Stress vs. creep modulus at t = 20 years, predicted using linear viscoelastic 
model fit functions (bold blue line)   
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Figures 15-18: Creep data fit using an exponential time function and an exponential stress 
function 

 
• This fit has the advantage of being explicitly stress dependent, unlike the 

linear viscoelastic model 
• This fit has the same problems as the linear viscoelastic model, but it gives a 

worse fit 
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Figure 19: Stress vs. creep modulus at t = 20 years, predicted using an exponential stress 
and exponential time fit function (bold pink line)   
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Figures 20-23: Creep data fit using an exponential time function and a power law stress 
function 
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Figure 24: Stress vs. creep modulus at t = 20 years, predicted using a power law stress 
and exponential time fit function (bold yellow line)   

 

t=20 years creep modulus

0

50000

100000

150000

200000

250000

300000

350000

400000

0 500 1000 1500 2000 2500



Figures 25-28: Creep data fit using an exponential time function and an exponential and 
power law stress function 
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Figure 29: Stress vs. creep modulus at t = 20 years, predicted using a power law and 
exponential stress and exponential time fit function (bold light blue line)   
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Figures 30-33: Creep data fit using an exponential time function and a linear stress 
function 
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Figure 34: Stress vs. creep modulus at t = 20 years, predicted using a linear stress and 
exponential time fit function (bold purple line)   
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Figures 35-38: Creep data fit using an power law function 
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Figure 39: Stress vs. creep modulus at t = 20 years, predicted using a power law function 
(bold red line)   
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ANALYSIS/IMPLICATIONS 
• For long times, linear viscoelastic model has a horizontal asymptote- this is not 

consistent with the expected shape of the strain curve, and it is not realistic to 
think that the strain rate will just go to zero and stay there. 

• Power law fit continually increases at long times- since we expect to see a 
positive strain rate in both the secondary and tertiary creep stages, this may be 
more realistic 

• The power law fit predicts well for high stress, and underpredicts for low stress 
• The secondary creep stage has a constant strain rate, which means strain increases 

linearly.  
• The power law fit increases proportionally to t1/3 
• If the creep reaches the secondary creep stage before 20 years, the strain will 

increase even faster than with the power law (this compares t1/3 to t) 
 
CREEP MODULUS VS. TIME 

 

Figure 40: Creep modulus vs. time 
curves, extrapolated to 20 years, for all 
fits discussed earlier. The pink curve is 
the power law fit, and the bold red curve 
is the data. The rest of the curves are fits 
with exponential time dependence 
functions. (Note: x-axis is log scale, y-
axis is linear scale) 
 

Figure 41: Creep modulus vs. time 
curves, extrapolated to 20 years. The red 
curve is the data, and the black curve is a 
log fit function for the data curve. (Note: 
x-axis is log scale, y-axis is linear scale) 
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• Since I have done very little analysis on the creep modulus vs. time curves, this fit 
(figure 41) is included just to demonstrate the lack of predictive power that our 
current data set provides. 

• It is clear from figure 40 that none of the fits gives the same curve as the data 
when comparing creep modulus to time. 

• If the fit in figure 41 is accurate, the strain in the PVC would be infinite around 
930 days, clearly indicating that the detector would not survive even 3 years 

• Since I have no literature or data to support an assertion about fitting a creep 
modulus vs. time curve, I’m not trying to make a presumptuous assertion, 
however I felt that it was an important result to share. 

 
CONCLUSIONS 

• Linear viscoelastic theory only roughly fits the data for creep in PVC 
• The data we have collected represents only the primary creep stage, which gives 

limited predictive power for later times 
• There is no indication in the data that the secondary, or even tertiary, creep stages 

would not be reached in 20 years 
• Based on this data, I think that an upper bound of 100,000-150,000 for the creep 

modulus at 20 years would be a conservative estimate 
• In order to make a reasonable prediction of the strain on the PVC after 20 years, 

more data needs to be taken that includes the secondary and tertiary creep stages 
 
NEXT STEPS 

• Temperature dependent creep tests 
– This will hopefully give us data on the secondary and tertiary creep stages 
– The samples and test stands are ready for these tests to begin 

• Determine an acceptable range of creep moduli for NOvA
– This should elucidate the implications of the creep analysis on the detector 


